Math 10A with Professor Stankova
Quiz 5; Wednesday, 9/27/2017
Section \#106; Time: 10 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False It is possible that repeatedly using Newton's method brings you further and further from the root.
2. TRUE False The Taylor series for $x^{4}+3 x^{2}-5 x+1$ is $x^{4}+3 x^{2}-5 x+1$.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (5 points) Approximate $\sqrt[3]{8.12}$ using second order Taylor series. You may leave your answer as a sum of fractions.

Solution: We want to approximate the function $f(x)=\sqrt[3]{x}$. A good base point is a value nearby which is $\sqrt[3]{8}=2$. So expanding $f(x)$ around $x=8$ gives

$$
\begin{aligned}
& f(x) \approx f(8)+f^{\prime}(8)(x-8)+\frac{f^{\prime \prime}(8)}{2}(x-8)^{2}=2+\frac{x-8}{3 \cdot 2^{2}}-\frac{(x-8)^{2}}{9 \cdot 2^{5}} \\
&=2+\frac{x-8}{12}-\frac{(x-8)^{2}}{288} .
\end{aligned}
$$

Now we plug in $x=8.12$ to get

$$
\sqrt[3]{8.12} \approx 2+\frac{0.12}{12}-\frac{(0.12)^{2}}{288}=2+\frac{1}{100}-\frac{1}{2 \cdot 10^{4}}
$$

(b) (1 point) When using Newton's method to find a zero of a function $f(x)$, what is the formula for the next guess x_{1} if my current guess is x_{0} ?

Solution:

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

(c) (4 points) Use Newton's method once to approximate $\sqrt[3]{8.12}$.

Solution: Our function that we want to find a zero of is not $\sqrt[3]{x}$ but $x^{3}-8.12$. Our initial guess is $x_{0}=2$, not $x=8$ because we want to guess the final answer. Now we use the above formula to get that our next guess is

$$
x_{1}=2-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=2-\frac{8-8.12}{3 \cdot 2^{2}}=2+\frac{0.12}{12}=2.01 .
$$

